本文章由 WyOJ Shojo 从洛谷专栏拉取,原发布时间为 2024-06-18 10:33:04
看了一圈题解区只有我用了暴力展开 /jy
实际上并不难,还有点水,也不难调。
相信各位应当都会中缀表达式的计算:我们维护一个符号栈和一个数据栈,然后分类讨论根据优先级计算即可。这一点不管是别的题目还是题解区已经讲的很好了,OI Wiki 上的讲解也不错。
这篇题解的重点是把普通整数上的操作扩展到多项式。
由于只有一个字母,我们可以维护系数向量 $v$,其中 $v_k$ 代表 $a^k$ 的系数,常数就是 $a^0$ 的系数。于是,我们就可以用 $O(k)$ 时间做到加减操作。
然后考虑乘和乘方。先考虑朴素的 $O(n^2)$ 乘法。(通过手工模拟可得),代码为:
for (int i = 0; i < K; i++)
for (int j = 0; i + j < K; j++)
r.k[i + j] += k[i] * x.k[j];
如果要求更高的速度,可以用 FFT 优化。但是本题数据范围比较小,所以不用。
乘方可以用经典的快速幂,复杂度是 $O(k^2\log n)$ 的,或者是 $O(k \log^2 n)$(FFT 优化)。
接下来就是代码时间了,其实思路是非常好想的。
但是有几点注意:
数据换行符含有
\r,不能简单地用getline最后一个点卡爆
long long,所以需要对这个多项式取模(所以不妨用 NTT)括号可能不匹配 遇到这种情况,应该直接丢掉多余的括号
接下来放看起来还是很不错的代码:
#include <iostream>
#include <stack>
#include <cstring>
#define siz(x) static_cast<int> ((x).size ())
#define fi first
#define se second
#define int long long
using namespace std;
const int N = 30, K = 500, P = 998244353;
class poly {
public:
int k[K];
poly () { memset (k, 0, sizeof k); }
poly (const poly &x) { memcpy (k, x.k, sizeof k); }
poly &operator = (const poly &x) { memcpy (k, x.k, sizeof k); return *this; }
poly (int x, bool flag = false) { memset (k, 0, sizeof k), k[flag] = x; }
poly operator + (const poly &x) {
poly r;
for (int i = 0; i < K; i++) r.k[i] = (k[i] + x.k[i]) % P;
return r;
}
poly operator - (const poly &x) {
poly r;
for (int i = 0; i < K; i++) r.k[i] = (k[i] + P - x.k[i]) % P;
return r;
}
poly operator * (const poly &x) {
poly r;
for (int i = 0; i < K; i++) for (int j = 0; i + j < K; j++) (r.k[i + j] += k[i] * x.k[j] % P) %= P;
return r;
}
poly operator ^ (int x) {
poly r = *this, p = *this;
--x;
while (x) {
if (x & 1) r = r * p;
x >>= 1, p = p * p;
}
return r;
}
bool operator == (const poly &x) {
for (int i = 0; i < K; i++) if (k[i] != x.k[i]) return false;
return true;
}
friend ostream &operator << (ostream &out, const poly &x) {
for (int i = K - 1; i >= 2; i--) if (x.k[i]) {
if (x.k[i] == 1) out << "a^" << i << " + ";
else if (x.k[i] == -1) out << "-a^" << i << " + ";
else out << x.k[i] << "a^" << i << " + ";
}
if (x.k[1] == 1) out << "a + ";
else if (x.k[1] == -1) out << "-a + ";
else if (x.k[1]) out << x.k[1] << "a + ";
out << x.k[0];
return out;
}
};
stack<char> op;
stack<poly> q;
void ins (char c)
{
poly y, x;
if (c == '(') return;
if (q.empty ()) cout << "fuck off", exit (0);
y = q.top (), q.pop ();
if (q.empty ()) cout << "fuck off", exit (0);
x = q.top (), q.pop ();
switch (c) {
case '+': q.push (x + y); break;
case '-': q.push (x - y); break;
case '*': q.push (x * y); break;
case '^': q.push (x ^ y.k[0]); break;
default: break;
}
}
int prio (char c)
{
switch (c) {
case '(': return 0;
case '+': case '-': return 1;
case '*': return 2;
case '^': return 3;
default: return -1;
}
}
bool space (char c) { return c == ' ' || c == '\n' || c == '\r'; }
poly expand (void)
{
int level = 0;
char c;
while (!q.empty ()) q.pop ();
while (space (c = getchar ()));
do {
if (isdigit (c)) {
int x = 0;
do x = (x * 10 % P + c - '0') % P; while (isdigit (c = getchar ()));
while (space (c) && c != '\n') c = getchar ();
q.push (poly (x));
if (c == '\n') break;
else continue;
}
switch (c) {
case 'a': q.push (poly (1, true)); break;
case '(': op.push ('('), level++; break;
case ')':
if (--level < 0) break;
while (!op.empty () && op.top () != '(') ins (op.top ()), op.pop ();
op.pop (); break;
default:
while (!op.empty () && prio (op.top ()) >= prio (c)) ins (op.top ()), op.pop ();
op.push (c); break;
}
while (space (c = getchar ()) && c != '\n');
} while (c != '\n');
while (!op.empty ()) ins (op.top ()), op.pop ();
return q.top ();
}
int read (void)
{
int res = 0;
char c;
while (!isdigit (c = getchar ()));
do res = res * 10 + c - '0'; while (isdigit (c = getchar ()));
return res;
}
signed main (void)
{
int n;
poly res;
res = expand ();
n = read ();
for (int i = 1; i <= n; i++) if (expand () == res) putchar ("ABCDEFGHIJKLMNOPQRSTUVWXYZ"[i - 1]);
putchar ('\n');
return 0;
}

鲁ICP备2025150228号